Quartic Non-Polynomial Spline Method for Singularly Perturbed Differential-difference Equation with Two Parameters
نویسندگان
چکیده
منابع مشابه
A method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers
In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...
متن کاملQuartic Non-polynomial Spline Solution of a Third Order Singularly Perturbed Boundary Value Problem
Abstract: In this study, the non-polynomial spline function is used to find the numerical solution of the third order singularly perturbed boundary value problems. The convergence analysis is discussed and the method is shown to have second order convergence. The order of convergence is improved up to fourth order using the improved end conditions. Numerical results are given to describe the ef...
متن کاملNon-polynomial spline solution of singularly perturbed boundary-value problems
In this article, using non-polynomial cubic spline we develop the classes of methods for the numerical solution of singularly perturbed two-point boundary-value problems. The purposed methods are secondorder and fourth-order accurate and applicable to problems both in singular and non-singular cases.Numerical results are given to illustrate the efficiency of our methods and compared with the me...
متن کاملAn efficient numerical method for singularly perturbed second order ordinary differential equation
In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...
متن کاملA Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts
In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Engineering Advancements
سال: 2021
ISSN: 2708-6437,2708-6429
DOI: 10.38032/jea.2021.02.002